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SUMMARY

A two-dimensional lattice model has been developed to describe the influence of vegetation on the turbulent
flow structure in an open channel. The model includes the influence of vegetation density on the frictional
effect of the channel bed and walls. For the walls, a semi-slip boundary condition has been considered as
an alternative to overcome the no-slip boundary condition limitations in turbulent flows. The drag stress
exerted by the flow on the vegetation as well as the gravity effect has also been taken into account. The
proposed lattice model has been used to simulate the experimental results reported from the study of the
influence of alternate vegetated zones on the open-channel flow. The results show that the lattice model
approach is a valid tool for describing these kinds of flows. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Interest in using riparian vegetation in river restoration techniques has grown considerably in the
last decade [1, 2]. Many field and laboratory experiments have been devoted to describing the
interactions between flow, sediment transport and riparian vegetation. The effect of the emergent
or submerged and rigid or flexible vegetation on the flow velocity and turbulent structure has been
analysed in several works [3–13]. The drag coefficient of vegetation has been explored during the
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last years [14–18]. The sediment transport in vegetated channels [19] and the efficiency of the
vegetation trapping and sorting sediments [20] have also been described and measured.

The experiments on vegetated open channels [10] have shown that: (i) Flow velocities and
near-bed shear stresses are reduced within vegetation zones. (ii) Turbulence intensity is increased
near the canopy tops for submerged vegetation and along the interface between emergent riparian
vegetation and the main channel. (iii) Vegetation increases local and boundary flow resistance.
(iv) Vegetation reduces the flow transport capacity and causes sorting and deposition of sediment.
(v) Vegetation creates secondary circulation patterns.

These complex phenomena have been simulated with different models. Among others, a depth-
averaged two-dimensional k–� model [21, 22] was proposed for describing the flow in vegetated
open channels, combining it with a sediment transport model. Two-dimensional models [6] were
used to characterize turbulent flow with vegetation effect. A large eddy simulation (LES) model [23]
was developed to simulate the hydrodynamic behaviour of the turbulent flow in an open channel
with a domain of vegetation. A Reynolds stress model [24] was applied to open-channel flows with
vegetation. Two different turbulence closure schemes [25], a modified k–� model and a two-layer
model based on the mixing length approach, were used to study vegetation effects on the mean
and turbulent flow structure.

Although the above-mentioned models are powerful tools, it is also of great interest to check the
possibilities offered by other approaches with the aim of complementing the existing frameworks
developed to simulate the complex effects of vegetation on the open-channel flow. The lattice
model approach [26] is a particle-based numerical tool developed to simulate fluid dynamics.
A lattice model is a synthetic physical system, whose microscopic rules are easy to simulate
on a computer. Therefore, lattice models can be naturally applied to the description of complex
phenomena. In addition, the lattice model simplicity, flexibility, intrinsic parallelism and the use
of simple and regular meshes are features that permit this approach to be an alternative for solving
partial differential equations [27].

The main aim of this work is to apply the lattice model framework for describing the interaction
between vegetation and flow in an open channel. The model developed here simulates the turbulent
flow using the LES technique and takes into account the influence of vegetation density on the
channel bed and wall frictional stresses, as well as the drag stress exerted by the stream on the
vegetation and the gravity effect. The model is validated by comparing the numerical predictions
with the experimental flow patterns [10] in the presence of alternate zones of emergent vegetation
when considering different vegetation densities.

2. METHODS

2.1. Modelling approach

In the experiments reported by [10, 11], the flows were subcritical and they did not display any
significant vertical acceleration (i.e. hydrostatic pressure over the water column). Under these
circumstances, the turbulent flow can be conceptualized as a two-dimensional and uniform-depth
domain in which the space-filtered Navier–Stokes (NS) equations can be applied by using LES.
This version of the NS equations requires more computer power than the Reynolds equations, time-
averaged NS equations with a model for the turbulence stress such as the k–� model. However,
the space-filtered NS equations provide a more accurate solution to the turbulent flow [28].
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For a turbulent flow in the presence of emergent vegetation, the space-filtered NS equations can
be written as follows:

∇ũ= 0 (1)

and

h
�̃u
�t

+ h(̃u∇ )̃u= h̃�∇2ũ − ghss − 1

�
[sb + sw + d f ] (2)

in which h is the spatially averaged flow depth, t is the time, ũ is the space-filtered flow velocity,
g is the acceleration of gravity, ss is the spatially averaged fluid surface slope, �̃ is the effective or
space-filtered kinematic viscosity, � is the fluid density, sb and sw are, respectively, the bed and
wall shear stresses due to friction, and d f is the drag stress exerted on vegetation.

The present modelling study approximates the flow pattern governed by Equations (1) and (2)
using the lattice model scheme [29, 30]. This method describes fluid dynamics phenomena on a
mesoscopic scale between the microscopic and macroscopic ones. At this level, the flow domain
is transformed into a regular lattice where fluid particles move and interact continuously with each
other following simple rules, conserving mass and momentum in the process [31, 32]. The lattice
model used in this work, known as the BGK scheme [33, 34], is based on a simplification of its
ancestor, the lattice Boltzmann model, using the relaxation time parameter [35] proposed in the
context of collisions of gas molecules.

2.1.1. The lattice BGK scheme. In the BGK model, the particles move in a regular lattice, in
which each node is linked to its neighbours following a vicinity model that is chosen depending
on the complexity of the phenomenon to be simulated. To calculate the fluid velocity field in
two dimensions the vicinity model d2q9 is frequently used [26]. Figure 1 shows that model,
in which d = 2 means the number of dimensions and q = 9 denotes the number of particles
considered, in this case eight moving particles and one at rest, respectively. In the same figure,
the independent variable fi varies continuously between 0 and 1 according to the Boltzmann
molecular chaos hypothesis and represents the probability of finding a particle in a link i that

f2f4 f3

f0f5

f6 f7 f8

f1

Figure 1. The vicinity model d2q9 used in the simulations done with the proposed lattice BGK model;
d and q denote the number of dimensions and particles (eight moving and one at rest), respectively.
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connects a node with one of its neighbours. The interactions of the particles keep up the mass and
momentum [31, 32].

The equation of the lattice BGK model for a node r at time t , adopting the Einstein summation
convention (i.e. repeated indices mean a summation over the space coordinates), is [26]

fi (r + �tci , t + �t) = 1

�
f eqi (r, t) +

(
1 − 1

�

)
fi (r, t) + �t

c2s
zi cik Fk(r, t) (3)

where k represents the streamwise (k = �) and lateral (k = �) directions, ci is the velocity vector
of a particle in the link i , which is defined by (4) considering c= �r/�t , with �r being the length
of the lattice spacing:

ci =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, (i = 0)

�c cos

(
�(i − 1)

4

)
+ �c sin

(
�(i − 1)

4

)
, (i = 1, 3, 5, 7)

�
√
2c cos

(
�(i − 1)

4

)
+ �

√
2c sin

(
�(i − 1)

4

)
, (i = 2, 4, 6, 8)

(4)

f eqi is the local equilibrium function, � is the relaxation time parameter that represents the difference
between fi and f eqi , zi are weighting factors associated with the lattice directions, cs is the speed
of sound, a parameter selected according to the vicinity model chosen and Fk is the component of
the external stress in the k direction. Using the Chapman–Enskog expansion, it is mathematically
demonstrable that Equation (3) can recover the NS equations to the second order of accuracy
[26, 29, 32] if f eqi is chosen in the following way:

f eqi = �zi

[
1 + cikuk

c2s
+ 1

2

(
cikuk
c2s

)2

− ukuk
2c2s

]
, ∀i ∈ [1, q − 1]

f eqi = �zi

(
1 − ukuk

2c2s

)
, i = 0

(5)

For the d2q9 neighbourhood model, it is found that c2s = c2/3, z0 = 4
9 , z1,3,5,7 = 1

9 and z2,4,6,8 =
1
36 [36].
The density � and velocity u are deduced from fi according to

�(r, t) =
q−1∑
i=0

fi (r, t)

u(r, t) =
∑q−1

i=1 fi (r, t)ci
�(r, t)

(6)

and the kinematic viscosity, �, is defined as

� = �r2

�t
c2s

(
� − 1

2

)
(7)
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With the aim of simulating turbulent flows, the LES technique is adapted to the lattice BGK
model in the way suggested by [37]. Thus, the effective viscosity �̃, made up of the original
kinematic viscosity � and an eddy viscosity �t , is considered:

�̃ = � + �t (8)

The eddy viscosity has been determined in this work using the Smagorinsky eddy viscosity
model [26, 38, 39], where �t is defined as

�t =C2
smago�

2|S| (9)

where � is the filter size, that usually corresponds to �r . It is frequent to assume in the lattice
BGK model simulations �r =�� =�� = 1 lattice unit and �t = 1 time step [26]. Thus, � = 1. The
magnitude of the strain-rate tensor, S��, is |S| =√

2S��S�� and the external parameter Csmago is
called the Smagorinsky constant. The spatially filtered relaxation time �̃ is related to the original
� and eddy �t relaxation times from (9) as

�̃ = �̃

c2s
+ 1

2
= � + �t

c2s
+ 1

2
= � + �t

c2s
= � + �t (10)

The strain-rate tensor can be deduced from the non-equilibrium momentum flux tensor, ���, in
the following way [32, 40]:

|S| = 1

2�(� + �t )

1

c2s

√
������ (11)

with

��� = ∑
i
ci�ci�( fi − f eqi ) (12)

Once |S| is calculated from (11) considering (12), its value is replaced in (9) and, consider-
ing (10), the expression for �̃ can be obtained:

�̃ = 1

2

⎛⎝� +
√

�2 + 2C2
smago

√
������

�

⎞⎠ (13)

The spatially filtered equation of the lattice BGK model is obtained by replacing � by �̃
in (3) [26]:

fi (r + ci , t + 1) = 1

�̃
f eqi (r, t) +

(
1 − 1

�̃

)
fi (r, t) + 1

c2s
zi cik Fk(r, t) (14)

where �r = 1 lattice unit and �t = 1 time step. By using the fi ’s derived from (14) and substituting
them in (6), the spatially filtered velocity ũ(r, t) can be determined.

To simulate a turbulent flow with the lattice BGK and Smagorinsky models, it is necessary to
fit empirically Csmago depending on the configuration of the flow. This is the main drawback of
the use of the Smagorinsky subgrid scale model.

The conversion rules between the magnitudes used in the proposed lattice BGK model and
their corresponding physical values [26] are shown in Table I. The scale factors �r and �t are,
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Table I. Conversion rules between the magnitudes used in the lattice
BGK model and their physical values [26].

Magnitude Lattice BGK model Physical value

Time t t real =�t t
Space r r real =�r r
Velocity u ureal = (�r/�t)u
Acceleration of gravity g greal = (�r/�t2)g
Kinematic viscosity � �real = (�r2/�t)�

Note: The scale factors �r and �t are expressed in SI units.

respectively, the length of the lattice spacing and the time elapsed during one iteration or time step
expressed in SI units.

2.1.2. The external stress in the lattice BGK model. As shown in (14), the external stress can be
included in an easy way in the lattice BGK model equation [40, 41]. In the model proposed here
for flow in an open and vegetated straight channel, the external stress consists of the bed and wall
shear stresses due to friction, sb and sw, respectively, the drag stress exerted on vegetation, d f ,
and the effect of gravity, g, by considering the fluid surface slope, ss. For the spatial direction k, F
can be expressed as

Fk(r, t) =−g(1 − �b)ssk − 1

h
[	bk(r, t) + 	wk(r, t) + d f k(r, t)] (15)

where h = 1 lattice unit is adopted, g= 9.81m s−2 (�t2/�r) according to Table I and �b is the
fraction of bed occupied by the vegetation in the zones where it is placed. For the vegetated
area shown in Figure 2, �b = 2N
2/�2, with N as the number of vegetation elements, 
 as the
diameter of each vegetation element and � as the diameter of the semi-circular vegetated area.
Otherwise, �b = 0.

The shear stress due to bed friction is included in the lattice BGK model by means of the
expression (16) derived from [42] taking into account �b:

	bk =Cb(1 − �b)̃uk |̃u| (16)

Cb is a non-dimensional bed friction coefficient calculated from

Cb = gn2b
h1/3

(17)

where nb is the Manning roughness coefficient at the bed and h is expressed in SI units (i.e. the
real value reported from the experiments).

In a similar way [43], the shear stress in the channel walls is considered as

	wk =Cw(1 − �w)̃uk |̃u| (18)

where, Cw is a non-dimensional friction coefficient calculated from (17) replacing nb by the
Manning roughness coefficient at the walls, nw. In this work nb = nw is assumed. The fraction of
the channel wall area, �w, covered by the vegetation elements is calculated from �w = 
/bv in the
case of Figure 2, with bv being the vegetation spacing. For non-vegetated areas, �w = 0.
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N

wall  

θ

φ

vegetation 
element 

vegetation
zone 

bv

bv

flow direction 

wall  

Figure 2. Scheme used in the computation of the projected area of the vegetation in the streamwise
direction, Av, according to expression (20). The vegetated zone (dashed line) is a semi-circle with a
diameter � containing N similar emergent vegetation elements (black dots) in a staggered arrangement
with a diameter 
 separated between them by a distance bv. The sum of the projected areas of the vegetation
elements in the streamwise direction is Anv = N
�h, with � being the shape factor of vegetation. The

projected area of the vegetated zone in the same direction is Avz = h�/2, with Av = 2N
�/�.

Finally, the drag stress exerted by the flow on vegetation is [44]
d f k = 1

2CdAvũk |̃u| (19)

with Cd as a non-dimensional drag coefficient related to the flow and vegetation characteristics [45].
The parameter Av represents the relationship between the area of the vegetation elements, Anv,
and the area of the vegetated zone where they are placed, Avz, both projected in the streamwise
direction so that

Av = Anv

Avz
(20)

For the scheme shown in Figure 2, Anv = N
�h, with � being a non-dimensional shape factor of
vegetation related to its irregularity and flexibility and Avz = h�/2, resulting in Av = 2N
�/�.

2.1.3. Boundary conditions. In all the lattice BGK model simulations carried out here, the flow
is determined by assigning the spatially averaged velocity u0 at the inlet of the computational
domain and the periodic boundary condition is applied at the outlet.

Because of considering the shear stress in channel walls, the boundary condition applied at these
places has to be different from the common bounce-back rule used in lattice BGK models for
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Figure 3. Diagram of the mirror-image method proposed by [46] for impermeable boundary treatment.
It corresponds to the slip boundary condition that, combined with the channel wall shear stress, leads to
the semi-slip boundary condition proposed by [43] for turbulent flows: (a) the distribution functions are
calculated in O from (14); (b) application of the mirror-image method copying the fi ’s of cell O in an
imaginary cell O ′; (c) slip boundary condition changing the adequate values of fi ’s in O ′; and (d) values

of the fi ’s in O ′ after the streaming step.

simulating solids. There is a large velocity gradient near a solid boundary for turbulent flows due
to wall friction [43], which cannot be simulated correctly with a no-slip boundary condition. One
alternative for dealing with these kinds of boundaries is the semi-slip boundary condition proposed
by [43], which has been adopted here. It consists of a combination of the shear stress (18) with the
slip boundary condition indicated in Figure 3 according to [46] at the places marked as channel
wall in the computational domain. In the pre-streaming phase (Figure 3a), the so-called collision
step, the value of fi is calculated using (14) for each link i at node O . In order to apply the
slip boundary condition, it is necessary to determine the missing distribution functions f2, f3 and
f4 that arise from cells outside the domain that are imaginary. Following [46], the distribution
functions can be calculated from those corresponding to the cells inside the domain using the
mirror-image method (Figure 3(b)). The slip boundary condition is applied at the imaginary cells
(O ′, W ′ and E ′) changing the distribution functions in the way described in Figure 3(c). As a
consequence, the sum of momentum normal to the wall is zero. The new values of fi at O after
the streaming step are shown in Figure 3(d). Using them in (14), it was possible to derive the
velocity for calculating the wall shear stress from (18).

2.2. Laboratory experiments on the flow around alternate vegetation zones

The experiments on the flow in the presence of alternate emergent vegetation zones presented
in [10] were conducted using a tilting re-circulating flume of l = 16.5m in length and w = 0.6m
in width. Its scheme is shown in Figure 4. The flume was equipped with an upstream baffle to
damp pump-related turbulence and a downstream weir to establish a uniform flow regime. The
flow discharge P was kept constant at 0.0042m3 s−1 in all the experiments. Flow depths were
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16.5 m 

adjustable weir flow direction 
test section (6.5 m) 

depth measurement 
zone (2.4 m) vegetation zones baffle 

(1 m) 

0.6 m 

meander wavelength (4.8 m) 

Figure 4. Diagram of the experimental channel used by [10] to study the turbulent flow structures caused
by emergent vegetation placed in alternate zones.

Table II. Some relevant features of the experiments performed by [10]
with two different vegetation densities, VD.

Vegetation zones Averaged flow parameters

Distance between rows
Dowels and columns,
per zone, N bv (× 10−3 m) VD (m−1) P (m3 s−1) h (m) u0 (m s−1) ss� (× 10−3)

113 36 0.176 0.0042 0.026 0.267 −1.52
1753 9 2.739 0.0042 0.036 0.196 −1.95

Note: P is the flow discharge and h, u0 and ss� are the spatially averaged flow depth, velocity and water
surface slope, respectively.

measured over a 2.4m longitudinal section excluding the vegetation zones, and these data were
used to calculate the spatially averaged flow depth h, velocity u0 and water surface slope ss�.

A total of six alternate vegetation zones were placed along the length flume spaced at a dis-
tance  = 4.8m to each other,  was the so-called meander wavelength (Figure 4). The shape
of the vegetated areas was semi-circular with a diameter of � = 0.6m. The emergent vegetation
was simulated by using wooden dowels of 
= 3.2× 10−3 m in diameter and 70× 10−3 m in
height [10]. For a specific vegetation density VD, a number of dowels N were placed perpen-
dicularly to the plywood flume floor in a staggered arrangement with spacing bv to maximize
the flow resistance (Figure 2). The definition of vegetation density (21), expressed in m−1 and
adopted in the experiments, was the ratio between the sum of the frontal areas of the vege-
tation divided by the volume of fluid (depth water over an area encompassing one meander
wavelength ):

VD= N
h

wh
(21)

Particle image velocimetry (PIV) was used to characterize the surface flow field for the test area
marked in Figure 4 considering different vegetation densities. The experimental results obtained
by [10] with VD= 0.176 and 2.739m−1 in nine cross-sections were reported in [21]. Table II
summarizes some relevant features of these experiments.
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3. RESULTS

3.1. Grid independence study

The data corresponding to the time-averaged velocity, um , when VD= 0 were collected across
the experimental flume at three downstream different distances from the origin of the test section,
3.02m (velocity profile 1), 5.02m (velocity profile 2) and 6.94m (velocity profile 3) and they were
used to perform a grid independence study. Figure 5 shows these data, with y being the distance
from the right flume wall. These velocity profiles were selected because they displayed the least
spread. The momentum exchange vanishes across the flume plane of symmetry and, thus, this
plane can be treated as the free surface of a virtual uniform flow of depth 0.5w in an infinitely
wide channel. The velocity data set was interpreted as the equilibrium velocity distribution within
the virtual uniform flow. The Kármán–Prandtl equation to compute the velocity defect with respect
to the average velocity across the channel results in

um = a log
( y

0.5w

)
+ b (22)

with a = 2
√
8u∗ and b= 0.88

√
8u∗ + up, where u∗ is the shear velocity on the virtual channel

bottom and up is the average of the velocity profile across the flow depth.

0.18 0.2 0.22 0.24 0.26 0.28
um(m s-1)

0.1

1

y/
0.

5w

velocity profile 1
velocity profile 2
velocity profile 3
velocity profiles fit
um=0.0582 log(y/0.5w) + 0.27

516×20

1032×40

2064×80

Figure 5. Grid independence study carried out considering three computational domain sizes of
516× 20, 1032× 40 and 2064× 80 lattice units. The logarithmic law for turbulent flows, represented
by the fit obtained for the experimental velocity profiles 1, 2 and 3, was acceptably reproduced in
all the cases. The results obtained with the computational domain sizes of 1032× 40 and 2064× 80

lattice units are grid independent.
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The values of a = 0.0582 and b= 0.27 were obtained from the fit of (22), shown in Figure 5, to
the experimental velocity profiles. The goodness of the fit, determined by using the Nash–Sutcliffe
efficiency [47], E ∈ (−∞, 1], was E = 0.9332. Thus, u∗ = 0.0103m s−1 and up = 0.27m s−1

were derived. The boundary roughness corresponding to this velocity profile was determined by
using the Darcy–Weisbach resistance coefficient, fr, computed from the relation u∗ = up

√
f r/8.

The estimated value for fr was 0.01164. The expression for the Reynolds number of a flow of
uniform depth 0.5w in an infinitely wide channel yields Re= 4(0.5w)up/� = 3.24× 105. Enter-
ing fr and Re in the Moody diagram modified for open-channel flows, it is seen that the flume
wall behaves as a hydrodynamically smooth surface [48, Figure 2.5.1]. From these results, the
following can be concluded: (i) the average velocity of the flow on the free-surface plane, up,
is lower than the spatially averaged velocity, u0 = 0.307m s−1 [10, 11]; (ii) the velocity distribu-
tion on the free-surface plane follows the logarithmic law for turbulent flows; and (iii) the flume
wall behaves as a hydrodynamically smooth boundary in agreement with the conditions in the
experiments.

A grid independence study was performed by considering three computational domains with sizes
of 516× 20 (�r = 0.03m,�t = 0.01 s, � = 0.500033), 1032× 40 (�r = 0.015m, �t = 0.005 s,
� = 0.500066) and 2064× 80 (�r = 0.0075m, �t = 0.0025 s, � = 0.500133), in lattice units. The
value selected for Csmago was 0.12, frequently used by researchers [49]. The Smagorinsky model
works well for channel flows with the value adopted for Csmago [50] because it reduces the energy
dissipation near the walls. In all the cases, ss� =−1.55× 10−3 [10] and the parameters Cb and
Cw were calculated from (17) considering nb = nw = 0.015m−1/3 s and h = 0.023m. The value of
the Manning roughness coefficient was not reported by [10, 11]. The value adopted here for the
flume plywood corresponds to that suggested by [51, Tables 5 and 6] for laminated wood. The
velocity was set to 0.307m s−1 at the inlet in all the tests. The time-averaged velocity profiles at
3.02, 5.02 and 6.94m downstream distances from the origin of the test section were simulated for
each computational domain size. Figure 5 shows the fits obtained for those velocity profiles that
are not represented for the sake of clarity. It can be verified that the logarithmic law for turbulent
flows was well reproduced in all the cases. However, the experimental velocity data fit was better
matched when the size of the computational domain is 1032× 40 (E = 0.99911) or 2064× 80
(E = 0.99957) compared to the case of 516× 20 (E = 0.995). This fact shows that the results
obtained with the computational domain sizes of 1032× 40 and 2064× 80 lattice units are grid
independent.

The simulations were run on a SGI Origin 2000 server with eight MIPS R10000 processors
(200MHz). However, only six processors were used in the calculations because two processors were
always busy running tasks belonging to other users. A standard simulation consisted of 5× 104

time steps and it took 300, 1200 and 4800 s for the computational domain sizes of 516× 20,
1032× 40 and 2064× 80 lattice units, respectively. Therefore, adopting a compromise between
the computational time and accuracy of the results, the domain of 1032× 40 lattice units was
selected to perform the simulations with the proposed lattice BGK model.

3.2. Simulation of the vegetation density influence on the turbulent flow structure

The values adopted for �r , �t , �, Csmago, nb and nw in the simulations were equal to those
used in the grid independence study for the computational domain size of 1032× 40 lattice units.
For the vegetation densities simulated, the velocity was set to the corresponding values of u0
listed in Table II at the inlet, while the periodic and semi-slip boundary conditions were applied
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Table III. Values of the parameters used in the lattice BGK
model for the simulation of the experiment results described

by [10] for two different vegetation densities, VD.

VD (m−1) Cb =Cw �b �w Cd Av

0.176 0.00744 0.00642 0.088 1.1 2.411
2.739 0.00709 0.09973 0.355 2.85 37.397

Note: Cb and Cw are the channel bed and walls friction coeffi-
cients. �b and �w represent the fractions of the channel bed and
wall areas covered by the vegetation. Cd is a non-dimensional
drag coefficient and Av stands for the normalized area of the
vegetation elements projected in the streamwise direction.

Flow velocity (m s-1)

0.5
VD = 0.176 m-1

VD = 2.739 m-1

R1 R2 R3 R4 R5 R6 R7 R8 R9

R1 R2 R3 R4 R5 R6 R7 R8 R9

Figure 6. Time-averaged surface flow pattern simulated with the proposed lattice BGK model for the test
section (Figure 4) of the experiment performed by [10] for two different vegetation densities (VD). The
vegetation zones are represented by semi-circles. The vertical lines R j , j ∈ [1, 9], mark the places where

the surface flow velocities were measured.

at the outlet and the flume walls, respectively. The values of h and ss� used in the simulations
are reported in Table II. Regarding the vegetated zones, �b, �w and Av were deduced from the
experimental arrangement of the simulated vegetation elements described by [10]. The shape
factor for the rigid cylinders was assumed as � = 1. Table III summarizes the values of the
parameters used to simulate the two vegetation densities considered. The drag coefficient, Cd, had
to be obtained from calibration by comparing the simulated and measured surface flow velocities
[10, 21] in the test sections marked in Figure 6 and shown in Figures 8 and 9. For VD= 0.176
and 2.739m−1, they were fitted to 1.1 and 2.85, respectively. These values were similar to those
calibrated by [21], 1.2 and 3, using a numerical depth-averaged two-dimensional k–� model.
The Reynolds number in the vegetation zone is defined by Re= uv
/�, with uv as the mean
flow velocity in that area. According to [10, 11], uv = 0.171m s−1 for VD= 0.176m−1 while this
velocity was not available for VD= 2.739m−1. The simulated uv were 0.177 and 0.0043m s−1

for VD= 0.176 and 2.739m−1, giving Re= 566.4 and 13.76, respectively. According to the
experimental data compiled by [52, Figure 3.15], the drag coefficients fitted agreed reasonably
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0.3 m

30 s

 vortices
shedding

mixing layerdecelerated zone

small-scale 
   vortices large-scale vortices

VD = 2.739 m-1 

Figure 7. Flow pattern snapshots obtained for VD= 2.739 m−1 with the lattice BGK model at 30 s after
the particles of a passive tracer were released continuously at the apex of the central vegetation zone
in the test section of Figure 4. The flow structures reproduced by the model, such as the mixing layer,

decelerated zone and small-scale and large-scale vortices, agree with those described by [11].

well with the ones measured for those Reynolds numbers for a circular cylinder which are ≈ 1.15
and 2.74.

Figure 6 shows the time-averaged surface flow pattern over 100 samples each one taken every
1000 time steps. The simulated influence of the vegetation density was similar to that described
by [10]. At VD= 0.176m−1, the flow decelerated in the leeward of the vegetation zones and
accelerated in the opposite regions with the time-averaged velocity vectors being straight and
parallel. At VD= 2.739m−1, the flow was greatly perturbed by the emergent vegetation. In the
same way that [10] reported, the flow was diverted away from the vegetation zone towards the other
bank until it encountered the next vegetation zone downstream where it diverted again towards the
opposite bank.

Some of the effects of vegetation on turbulent flow structure described by [11] can be seen in
Figure 7. The flow patterns were visualized by a large number of particles of a passive tracer released
continuously at the apex of the central vegetated zone in the test section of Figure 4. Figure 7
shows the paths followed by the particles at 30 s after they were injected in the computational
domain when simulating VD= 2.739m−1. At each time interval �t , the position r of a particle
was calculated from the velocity u′, derived by applying a bilinear interpolation to the velocity
field obtained with the lattice BGK model, according to

rk(t + �t) = rk(t) + u′
k�t (23)

As can be observed in Figure 7, the lattice model reproduced the mixing layer described by [11].
It was created downstream of the vegetation zone associated with small-scale and large-scale
vortices, with the axis of rotation normal to the bed. The decelerated zone was placed downstream
of the vegetation, and it corresponds to the large near-dead area reported by [11]. The small-scale
vortices were located near and downstream of the vegetation zone apex. Their shape was elliptical
and they were shed continuously from the vegetated area, being in agreement with the description
made by [11]. The large-scale vortices were developed at a distance of about 1m downstream of
the vegetation zone and they had a tendency to fill the entire width of the flume as [11] observed.
The rotation direction of both kinds of vortices was towards the vegetated area.
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668 F. J. JIMÉNEZ-HORNERO ET AL.

R9R8R7

R6R5R4

R3R2

-0.1 0 0.1 0.2 0.3 0.4 0.5

u
m

(ms-1)

0

0.2

0.4

0.6

y 
(m

)

-0.1 0 0.1 0.2 0.3 0.4 0.5

u
m

(ms-1)

0

0.2

0.4

0.6

y 
(m

)

-0.1 0 0.1 0.2 0.3 0.4 0.5

u
m

(ms-1)

0

0.2

0.4

0.6

y 
(m

)

-0.1 0 0.1 0.2 0.3 0.4 0.5

u
m

(ms-1)

0

0.2

0.4

0.6

y 
(m

)

-0.1 0 0.1 0.2 0.3 0.4 0.5

u
m

(ms-1)

0

0.2

0.4

0.6

y 
(m

)

-0.1 0 0.1 0.2 0.3 0.4 0.5

u
m

(ms-1)

0

0.2

0.4

0.6

y 
(m

)

-0.1 0 0.1 0.2 0.3 0.4 0.5

u
m

(ms-1)

0

0.2

0.4

0.6

y 
(m

)

-0.1 0 0.1 0.2 0.3 0.4 0.5

u
m

(ms-1)

0

0.2

0.4

0.6

y 
(m

)

-0.1 0 0.1 0.2 0.3 0.4 0.5

u
m

(ms-1)

0

0.2

0.4

0.6

y 
(m

)

R1

Figure 8. Experimental surface flow velocities (symbols) measured by [10] and reported in [21] and the
simulated results (solid lines) using the proposed lattice BGK model in the sections, Ri , marked in Figure 6

when the vegetation density VD= 0.176 m−1.

In the test area cross-sections denoted by R j , j ∈ [1, 9], in Figure 6, the surface flow velocity
was measured by [10] and reported in [21]. Figures 8 and 9 show the experimental data taken by
PIV and the results obtained with the proposed lattice BGK model for VD= 0.176 and 2.739m−1.
As shown in those figures, the simulated results were similar to the measurements. The values of
the Nash–Sutcliffe efficiency, E , were acceptable as can be seen in Table IV. These results suggest
that the lattice BGK model introduced here is particularly appropriate for describing the turbulent
structures developed by the effect of the vegetation on open-channel streams.
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Figure 9. Experimental surface flow velocities (symbols) measured by [10] and reported in [21] and the
simulated results (solid lines) using the proposed lattice BGK model in the sections, Ri , marked in Figure 6

when the vegetation density VD= 2.739 m−1.

Table IV. Coefficient of efficiency, E , obtained with the results provided by the
lattice BGK model (Figures 8 and 9) for the surface flow velocity in the test

cross-sections reported by [10] and marked in Figure 6.

Section

VD (m−1) R1 R2 R3 R4 R5 R6 R7 R8 R9

0.176 0.824 0.973 0.979 0.831 0.926 0.981 0.948 0.883 0.984
2.739 0.894 0.992 0.986 0.987 0.955 0.985 0.951 0.913 0.973
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4. CONCLUSIONS

The proposed lattice BGK model has shown itself to be a suitable alternative for describing the
water flow in the presence of emergent vegetation arranged in alternate zones along an experimental
flume. The simulated time-averaged flow pattern and the surface flow velocities agreed with the
experimental results obtained by [10]. The effects of vegetation density on the turbulent flow
structure reproduced by the lattice model, including accelerated and decelerated zones, mixing
layer and small-scale and large-scale vortices, were similar to those described by [11].

The main features of the numerical model introduced in this work are: (i) The Smagorinsky sub-
grid scale model for simulating flow turbulence can be straightforwardly included. (ii) A simple
semi-slip boundary condition was used for the treatment of solid walls overcoming the draw-
backs of applying the standard non-slip boundary condition in turbulent flows at these locations.
(iii) The frictional effects of the channel bed and walls, the action of the gravity and the dragging
on the vegetation were added in the lattice model as external stresses, permitting us to consider
the vegetation density influence on the flow in an easy way. These characteristics make the lattice
BGK model a promising tool for being applied to simulate different river restoration techniques.

Some simplifications have been adopted in the proposed model to simulate the vegetation
elements, such as assuming them to be cylinders with a shape factor equal to unity. The projected
area of the vegetation in the streamwise direction was calculated from these parameters, and then
the drag coefficient was calibrated. However, natural vegetation has different features. For this
reason, some further work has to be done in collaboration with field and laboratory experiments
with the aim of having the possibility of applying the lattice model approach to a wider range of
flows in the presence of vegetation, including sediment transport.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of the Spanish Ministry of Education and Research (MEC)
Projects AGL2005-05326/AGR and AGL2006-10927-C03-03/AGR. F. J. Jiménez-Hornero wishes to thank
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